import cv2
import numpy as np
def make_coordinates(image, line_parameters):
slope,intercept = line_parameters
y1 = image.shape[0]
y2 = int(y1*(3/5))
x1 = int((y1-intercept)/slope)
x2 = int((y2-intercept)/slope)
#print(image.shape)
return np.array([x1,y1,x2,y2])
def average_slope_intercept(image,lines):
left_fit = []
right_fit = []
for line in lines:
x1,y1,x2,y2 = line.reshape(4)
parameters = np.polyfit((x1,x2),(y1,y2),1)
slope = parameters[0]
intercept = parameters[1]
if slope < 0:
left_fit.append((slope,intercept))
else:
right_fit.append((slope,intercept))
left_fit_average = np.average(left_fit, axis = 0)
right_fit_average = np.average(right_fit, axis = 0)
left_line = make_coordinates(image,left_fit_average)
right_line = make_coordinates(image,right_fit_average)
return np.array([left_line,right_line])
def canny(image):
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
blur = cv2.GaussianBlur(gray, (5, 5),0)
canny = cv2.Canny(blur,50,150)
return canny
def display_lines(image, lines):
line_image = np.zeros_like(image)
if lines is not None:
for x1,y1,x2,y2 in lines:
cv2.line(line_image,(x1,y1),(x2,y2),(255,0,0),10)
return line_image
def region_of_interest(image):
height = image.shape[0]
polygons = np.array([
[(200,height),(1100,height),(550,250)]
])
mask = np.zeros_like(image)
cv2.fillPoly(mask,polygons, 255)
masked_image = cv2.bitwise_and(image, mask) # used to mask the image only to show the region of interest
return masked_image
#image = cv2.imread('test_image.jpg')
#lane_image = np.copy(image)
#canny = canny(lane_image)
#cropped_image = region_of_interest(canny)
#lines = cv2.HoughLinesP(cropped_image,2,np.pi/180,100,np.array([]),minLineLength=40, maxLineGap=5)
#averaged_lines = average_slope_intercept(lane_image,lines)
#line_image = display_lines(lane_image,averaged_lines)
#combo_image = cv2.addWeighted(lane_image,0.8,line_image,1,1)
#cv2.imshow("result",combo_image)
#cv2.waitKey(0) #displays the image for a particular amount of time
cap = cv2.VideoCapture("test2.mp4")
while(cap.isOpened()):
_, frame = cap.read()
canny_image = canny(frame)
cropped_image = region_of_interest(canny_image)
lines = cv2.HoughLinesP(cropped_image,2,np.pi/ 180,100,np.array([]),minLineLength=40, maxLineGap=5)
averaged_lines = average_slope_intercept(frame,lines)
line_image = display_lines(frame,averaged_lines)
combo_image = cv2.addWeighted(frame,0.8,line_image,1,1)
cv2.imshow("result",combo_image)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destrolAllWindows()